A Multi-set Approach for Direction Finding Based on Spatially Displaced Electromagnetic Vector-Sensors

Meijiao Ji, Xiaofeng Gong, and Qiuhua Lin
School of Information and Communication Engineering
Dalian University of Technology, Dalian 116023, China
E-mail: xfgong@dlut.edu.cn

Introduction

- Configuration of collocated electro-magnetic vector-sensors (EMVS)
 - Mutual coupling exists
 - Complicated hardware implementation
 - Allow the use of the vector cross-product direction finding scheme

- Configuration of spatially displaced electro-magnetic vector-sensors
 - Mutual coupling is reduced
 - Hardware cost is lower
 - Still allow the use of the vector cross-product direction finding scheme

- Spatially displaced electro-magnetic vector-sensors (SD-EMVS) array
 - \(\alpha \) is the counter-clockwise rotation angle
 - SD-EMVS is arranged in uniform line array.

- **scenario 1**
The latent source variables \(s^{(1)}_r \) and \(s^{(2)}_r \) for the \(r \)-th and \(r \)-th SD-EMVS’s are identical:
\[
\begin{align*}
 s^{(1)}_r &= s^{(2)}_r \\
 r &= 1, 2, ..., R
\end{align*}
\]

- **scenario 2**
The latent source variables \(s^{(1)}_r \) and \(s^{(2)}_r \) for the \(r \)-th and \(r \)-th SD-EMVS’s are not identical but correlated:
\[
\begin{align*}
 s^{(1)}_r &= s^{(2)}_r + \epsilon \\
 0 < \rho^{(1,2)} < 1
\end{align*}
\]

- Data model for SD-EMVS array within a single-set framework
\[
x(t) = \sum_{r=1}^{R} a_r s_r(t) + n(t) = A x(t) + n(t)
\]
- Modify the outputs to a large array for scenario 1
- Process each dataset separately for scenario 2

- Data model for SD-EMVS array within a multi-set framework
\[
x(t) = \sum_{r=1}^{R} a^{(r)}(t) + n(t)
\]
- Multiple datasets are jointly analyzed as a group for both scenario 1 and 2

Proposed algorithm

We reconsiders the SD-EMVS array signals within the multi-set framework where each SD-EMVS output is re-interpreted as one single dataset, and proposes to use the newly developed multi-set algorithm, namely generalized non-orthogonal joint diagonalization (GNJD) to estimate the steering vectors. Vector cross-product and optimization are used to extract the DOA’s.

- **Input:** observation \(x(t) \in \mathbb{C}^M, r = 1, 2, ..., R \) , snapshot \(T \)
- **Implementation:**
 - Calculate the cross covariance matrices \(C_{x_n,t} = E(x^{(n)}(k) [x^{(n)}(k)]^*) \)
 - Apply generalized non-orthogonal joint diagonalization (GNJD) to identify steering vector: \(A^{(n)} \)
 - Convert \(A^{(n)} \in \mathbb{C}^{L \times M} \) to \(\tilde{A}^{(n)} \in \mathbb{C}^{L \times L} \) according to projection matrix
 - Extract the DOA parameters by cross-product and optimization
- **Output:** estimated DOA parameters: \(\theta \) and \(\phi \)

Simulation

- Observed signal data with Gaussian noise:
\[
X_r = \sigma_r A x_r(t) + \sigma_s n_r(t), r = 1, 2, ..., R
\]
- \(\sigma_r \) and \(\sigma_s \) denote the signal and noise power, respectively
- \(\text{SNR} = -10\log_{10}(\sigma_r/\sigma_s) \)

- DOA parameters:
 - \(\theta \) \(\gamma \)
 - \(\eta \)
 - Overall Root Mean Squared Angular Error (RMSAE): \(\chi = M \sum_{r=1}^{R} \sqrt{E[\arccos(\hat{a}^* \hat{a})]} \)

- **Simulation 1:** the source signals received by different SD-EMVS are identical: \(\alpha^{(r, s)} = \alpha^{(r, t)} \) with \(1 \leq r, s \leq R \)
 - inter-spacing between EMVS’s is \(1.5\lambda \)
 - spread distance of dipoles/loops is \(0.7\lambda \)
 - \(M = 3 \) \(R = 4 \)

- **Simulation 2:** the \(m \)-th incident source signal received by \(r \)-th and \(r \)-th SD-EMVS are not identical but correlated: \(\alpha^{(m, r)} \)
 - inter-spacing between EMVS’s is \(1.0\lambda \)
 - spread distance of dipoles/loops is \(0.7\lambda \)
 - \(M = 3 \) \(R = 4 \)

Conclusions

- Numerical simulation results demonstrate that multi-set scheme could offer better performance compared with the three other schemes based on single-set, particularly at low SNR.
- In practical scenario that the incident sources received by different EMVS are not identical but correlated, multi-set approach provides more accurate estimates than single-set methods significantly.